Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Front Endocrinol (Lausanne) ; 14: 1129793, 2023.
Article in English | MEDLINE | ID: covidwho-20242154

ABSTRACT

The past two decades have witnessed telemedicine becoming a crucial part of health care as a method to facilitate doctor-patient interaction. Due to technological developments and the incremental acquisition of experience in its use, telemedicine's advantages and cost-effectiveness has led to it being recognised as specifically relevant to diabetology. However, the pandemic created new challenges for healthcare systems and the rate of development of digital services started to grow exponentially. It was soon discovered that COVID-19-infected patients with diabetes had an increased risk of both mortality and debilitating sequelae. In addition, it was observed that this higher risk could be attenuated primarily by maintaining optimal control of the patient's glucose metabolism. As opportunities for actual physical doctor-patient visits became restricted, telemedicine provided the most convenient opportunity to communicate with patients and maintain delivery of care. The wide range of experiences of health care provision during the pandemic has led to the development of several excellent strategies regarding the applicability of telemedicine across the whole spectrum of diabetes care. The continuation of these strategies is likely to benefit clinical practice even after the pandemic crisis is over.


Subject(s)
COVID-19 , Diabetes Mellitus , Telemedicine , Humans , COVID-19/epidemiology , Delivery of Health Care , Diabetes Mellitus/epidemiology , Diabetes Mellitus/therapy
2.
Exp Clin Endocrinol Diabetes ; 131(5): 260-267, 2023 May.
Article in English | MEDLINE | ID: covidwho-2276753

ABSTRACT

The growing amount of evidence suggests the existence of a bidirectional relation between coronavirus disease 2019 (COVID-19) and type 2 diabetes mellitus (T2DM), as these two conditions exacerbate each other, causing a significant healthcare and socioeconomic burden. The alterations in innate and adaptive cellular immunity, adipose tissue, alveolar and endothelial dysfunction, hypercoagulation, the propensity to an increased viral load, and chronic diabetic complications are all associated with glucometabolic perturbations of T2DM patients that predispose them to severe forms of COVID-19 and mortality. Severe acute respiratory syndrome coronavirus 2 infection negatively impacts glucose homeostasis due to its effects on insulin sensitivity and ß-cell function, further aggravating the preexisting glucometabolic perturbations in individuals with T2DM. Thus, the most effective ways are urgently needed for countering these glucometabolic disturbances occurring during acute COVID-19 illness in T2DM patients. The novel classes of antidiabetic medications (dipeptidyl peptidase 4 inhibitors (DPP-4is), glucagon-like peptide-1 receptor agonists (GLP-1 RAs), and sodium-glucose co-transporter-2 inhibitors (SGLT-2is) are considered candidate drugs for this purpose. This review article summarizes current knowledge regarding glucometabolic disturbances during acute COVID-19 illness in T2DM patients and the potential ways to tackle them using novel antidiabetic medications. Recent observational data suggest that preadmission use of GLP-1 RAs and SGLT-2is are associated with decreased patient mortality, while DPP-4is is associated with increased in-hospital mortality of T2DM patients with COVID-19. Although these results provide further evidence for the widespread use of these two classes of medications in this COVID-19 era, dedicated randomized controlled trials analyzing the effects of in-hospital use of novel antidiabetic agents in T2DM patients with COVID-19 are needed.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Sodium-Glucose Transporter 2 Inhibitors , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , COVID-19/complications , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Glucagon-Like Peptide 1/therapeutic use , Glucose
3.
Metabolites ; 13(1)2022 Dec 26.
Article in English | MEDLINE | ID: covidwho-2232885

ABSTRACT

Periodontitis is a microbially driven, host-mediated disease that leads to loss of periodontal attachment and resorption of bone. It is associated with the elevation of systemic inflammatory markers and with the presence of systemic comorbidities. Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although the majority of patients have mild symptoms, others experience important complications that can lead to death. After the spread of the COVID-19 pandemic, several investigations demonstrating the possible relationship between periodontitis and COVID-19 have been reported. In addition, both periodontal disease and COVID-19 seem to provoke and/or impair several cardiometabolic complications such as cardiovascular disease, type 2 diabetes, metabolic syndrome, dyslipidemia, insulin resistance, obesity, non-alcoholic fatty liver disease, and neurological and neuropsychiatric complications. Therefore, due to the increasing number of investigations focusing on the periodontitis-COVID-19 relationship and considering the severe complications that such an association might cause, this review aims to summarize all existing emerging evidence regarding the link between the periodontitis-COVID-19 axis and consequent cardiometabolic impairments.

4.
J Diabetes Complications ; 36(11): 108336, 2022 11.
Article in English | MEDLINE | ID: covidwho-2117652

ABSTRACT

The raging COVID-19 pandemic is in its third year of global impact. The SARS CoV 2 virus has a high rate of spread, protean manifestations, and a high morbidity and mortality in individuals with predisposing risk factors. The pathophysiologic mechanisms involve a heightened systemic inflammatory state, cardiometabolic derangements, and varying degrees of glucose intolerance. The latter can be evident as significant hyperglycemia leading to new-onset diabetes or worsening of preexisting disease. Unfortunately, the clinical course beyond the acute phase of the illness may persist in the form of a variety of symptoms that together form the so-called "Long COVID" or "Post-COVID Syndrome". It is thought that a chronic, low-grade inflammatory and immunologic state persists during this phase, which may last for weeks or months. Although numerous insights have been gained into COVID-related hyperglycemia and diabetes, its prediction, course, and management remain to be fully elucidated.


Subject(s)
COVID-19 , Diabetes Mellitus , Hyperglycemia , Humans , SARS-CoV-2 , Pandemics , COVID-19/complications , RNA, Viral , Diabetes Mellitus/epidemiology , Diabetes Mellitus/therapy , Hyperglycemia/complications , Inflammation/complications
5.
Journal of diabetes and its complications ; 2022.
Article in English | EuropePMC | ID: covidwho-2058382

ABSTRACT

The raging COVID-19 pandemic is in its third year of global impact. The SARS CoV 2 virus has a high rate of spread, protean manifestations, and a high morbidity and mortality in individuals with predisposing risk factors. The pathophysiologic mechanisms involve a heightened systemic inflammatory state, cardiometabolic derangements, and varying degrees of glucose intolerance. The latter can be evident as significant hyperglycemia leading to new-onset diabetes or worsening of preexisting disease. Unfortunately, the clinical course beyond the acute phase of the illness may persist in the form of a variety of symptoms that together form the so-called “Long COVID” or “Post-COVID Syndrome”. It is thought that a chronic, low-grade inflammatory and immunologic state persists during this phase, which may last for weeks or months. Although numerous insights have been gained into COVID-related hyperglycemia and diabetes, its prediction, course, and management remain to be fully elucidated.

6.
Biochim Biophys Acta Mol Basis Dis ; 1868(12): 166559, 2022 12 01.
Article in English | MEDLINE | ID: covidwho-2041586

ABSTRACT

Obesity, type 2 diabetes (T2DM), hypertension (HTN), and Cardiovascular Disease (CVD) often cluster together as "Cardiometabolic Disease" (CMD). Just under 50% of patients with CMD increased the risk of morbidity and mortality right from the beginning of the COVID-19 pandemic as it has been reported in most countries affected by the SARS-CoV2 virus. One of the pathophysiological hallmarks of COVID-19 is the overactivation of the immune system with a prominent IL-6 response, resulting in severe and systemic damage involving also cytokines such as IL2, IL4, IL8, IL10, and interferon-gamma were considered strong predictors of COVID-19 severity. Thus, in this mini-review, we try to describe the inflammatory state, the alteration of the adipokine profile, and cytokine production in the obese state of infected and not infected patients by SARS-CoV2 with the final aim to find possible influences of COVID-19 on CMD and CVD. The immunological-based discussion of the molecular processes could inspire the study of promising targets for managing CMD patients and its complications during COVID-19.


Subject(s)
COVID-19 , Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Adipokines , Cardiovascular Diseases/epidemiology , Cytokines , Diabetes Mellitus, Type 2/complications , Humans , Interferon-gamma , Interleukin-10 , Interleukin-2 , Interleukin-4 , Interleukin-6 , Interleukin-8 , Obesity/complications , Obesity/epidemiology , Pandemics , RNA, Viral , SARS-CoV-2
7.
Diabetes Ther ; 13(10): 1723-1736, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2007290

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the COVID-19 pandemic, has been shown to disrupt many organ systems in the human body. Though several medical disorders have been affected by this infection, a few illnesses in addition may also play a role in determining the outcome of COVID-19. Obesity is one such disease which is not only affected by the occurrence of COVID-19 but can also result in a worse clinical outcome of COVID-19 infection. This manuscript summarizes the most recent evidence supporting the bidirectional impact of COVID-19 and obesity. It highlights how the presence of obesity can be detrimental to the outcome of COVID-19 in a given patient because of the mechanical limitations in lung compliance and also by the activation of several thrombo-inflammatory pathways. The sociodemographic changes brought about by the pandemic in turn have facilitated the already increasing prevalence of obesity. This manuscript highlights the importance of recognizing these pathways which may further help in policy changes that facilitate appropriate measures to prevent the further worsening of these two pandemics.

8.
Diabetes ; 71, 2022.
Article in English | ProQuest Central | ID: covidwho-1923948

ABSTRACT

COVID-infection and its treatment can markedly worsen hyperglycemia. Conversely, patients with diabetes who contract SARS CoV-2 are at increased risk of morbidity and mortality, and their management post-hospital stay can be challenging. The aim of this study was to describe a comprehensive and effective approach for monitoring and treating glucose levels in COVID-patients after hospitalization. Over a period of nine months, 37 patients (13 females and 24 males, average age 64 years) were treated, with 18 having a previously known history of diabetes. All patients received therapy with multiple daily injections of insulin and started on personal continuous glucose monitoring (CGM) for use at home. The patients were evaluated every 2-4 weeks via in-person and telehealth visits. During and in between these visits, the outpatient insulin regimen was adjusted by electronic portal communication and remote data upload via software and individual CGM accounts. Ten patients were on basal insulin, while 27 were on multiple daily insulin injections. At a mean follow-up of 4 months post-discharge, the average hemoglobin A1c decreased from 10.3% to 6.9%, an impressive change of 3.4% (p<0.05) . The average time-in-range (TIR) , a key metric used with CGM, increased from 53% at first post-hospital visit, to 74% at 4 months. In conclusion, patients requiring hospital care after being diagnosed with acute COVID-infection manifest with significant exacerbation of hyperglycemia, and in many cases, new-onset diabetes. Most patients require intensive insulin regimens for diabetes control, often in concert with CGM use;this approach can effectively lower A1c and TIR. It is imperative that patients be provided close follow-up and support by maintaining contact on an ongoing basis.

9.
Diabetes Ther ; 13(3): 453-464, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1682096

ABSTRACT

INTRODUCTION: The glucagon-like peptide-1 agonist (GLP1-RA) liraglutide is currently approved for the treatment of both obesity and type 2 diabetes (T2DM). We investigated whether the effect of this agent on cardiometabolic parameters in subjects with T2DM varied in relation to the concomitant presence of obesity. METHODS: One hundred thirty-five subjects (78 men and 57 women; age: 62 ± 10 years) naïve to incretin-based therapies were treated with low-dose liraglutide (1.2 mg/day) as an add-on to metformin for 18 months. Patients were divided into two subgroups based on their body-mass index (BMI): (a) obese (BMI ≥ 30) and (b) non-obese (BMI < 30). Clinical and laboratory analyses were assessed at baseline and every 6 months. RESULTS: During follow-up, significant improvements were seen in both groups in fasting glycemia, glycated hemoglobin, waist circumference, and carotid intima-media thickness (cIMT), while body weight, BMI, total cholesterol, and low-density lipoprotein cholesterol decreased significantly in obese subjects only. Correlation analysis revealed that changes in subclinical atherosclerosis (assessed by cIMT) were associated with changes in triglycerides (r = 0.488, p < 0.0001) in the obese group only. CONCLUSION: Liraglutide had beneficial actions on glycemic parameters and cardiometabolic risk factors in both non-obese and obese patients with T2DM, with a greater efficacy in the latter. These findings reinforce the benefits of liraglutide for the cardiometabolic outcomes of obese patients with T2DM in the real-world setting. This has critical importance during the current pandemic, since patients with diabetes and obesity are exposed globally to the most severe forms of COVID-19, related complications, and death. TRIAL REGISTRATION: ClinicalTrials.gov identifier, NCT01715428.

10.
Medicina (Kaunas) ; 58(1)2022 Jan 11.
Article in English | MEDLINE | ID: covidwho-1636386

ABSTRACT

The current management of Type 2 Diabetes Mellitus (T2DM) includes incretin-based treatments able to enhance insulin secretion and peripheral insulin sensitivity as well as improve body mass, inflammation, plasma lipids, blood pressure, and cardiovascular outcomes. Dietary Free Fatty Acids (FFA) regulate metabolic and anti-inflammatory processes through their action on incretins. Selective synthetic ligands for FFA1-4 receptors have been developed as potential treatments for T2DM. To comprehensively review the available evidence for the potential role of FFA receptor agonists in the treatment of T2DM, we performed an electronic database search assessing the association between FFAs, T2DM, inflammation, and incretins. Evidence indicates that FFA1-4 agonism increases insulin sensitivity, induces body mass loss, reduces inflammation, and has beneficial metabolic effects. There is a strong inter-relationship between FFAs and incretins. FFA receptor agonism represents a potential target for the treatment of T2DM and may provide an avenue for the management of cardiometabolic risk in susceptible individuals. Further research promises to shed more light on this emerging topic.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Diabetes Mellitus, Type 2/drug therapy , Fatty Acids, Nonesterified , Humans
11.
Front Cardiovasc Med ; 8: 787761, 2021.
Article in English | MEDLINE | ID: covidwho-1603363

ABSTRACT

Efforts in the fight against COVID-19 are achieving success in many parts of the world, although progress remains slow in other regions. We believe that a syndemic approach needs to be adopted to address this pandemic given the strong apparent interplay between COVID-19, its related complications, and the socio-structural environment. We have assembled an international, multidisciplinary group of researchers and clinical practitioners to promote a novel syndemic approach to COVID-19: the CArdiometabolic Panel of International experts on Syndemic COvid-19 (CAPISCO). This geographically diverse group aims to facilitate collaborative-networking and scientific exchanges between researchers and clinicians facing a multitude of challenges on different continents during the pandemic. In the present article we present our "manifesto", with the intent to provide evidence-based guidance to the global medical and scientific community for better management of patients both during and after the current pandemic.

12.
Metab Syndr Relat Disord ; 20(3): 137-140, 2022 04.
Article in English | MEDLINE | ID: covidwho-1598386

ABSTRACT

As the world enters its third year of the COVID-19 pandemic, individuals with diabetes have faced particular challenges from the virus. A deleterious bidirectional relationship exists between the two disorders, with heightened inflammatory, immunologic, and cellular mechanisms leading to a more severe illness and increased morbidity and mortality. Tight glucose control, though necessary, is hampered by physical restrictions and difficulty accessing health care. Novel glucose-lowering medications may provide unique benefits in this regard. It is imperative that multi-pronged efforts be prioritized in order to reduce adverse outcomes in patients with diabetes at risk for COVID-19.


Subject(s)
COVID-19 , Diabetes Mellitus , Diabetes Mellitus/epidemiology , Diabetes Mellitus/therapy , Glucose , Humans , Pandemics , SARS-CoV-2
13.
Int J Mol Sci ; 22(22)2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-1524023

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (coronavirus disease 2019 [COVID-19]) pandemic has raged for almost two years, with few signs of a sustained abatement or remission [...].


Subject(s)
COVID-19/pathology , Cardiovascular Diseases/complications , Diabetes Complications/pathology , COVID-19/complications , COVID-19/virology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Humans , Lipoproteins, LDL/metabolism , SARS-CoV-2/isolation & purification
14.
Diabetes Ther ; 12(12): 3037-3054, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1482312

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). The latter is a pandemic that has the potential of developing into a severe illness manifesting as systemic inflammatory response syndrome, acute respiratory distress syndrome, multi-organ involvement and shock. In addition, advanced age and male sex and certain underlying health conditions, like type 2 diabetes mellitus (T2DM), predispose to a higher risk of greater COVID-19 severity and mortality. This calls for an urgent identification of antidiabetic agents associated with more favourable COVID-19 outcomes among patients with T2DM, as well as recognition of their potential underlying mechanisms. It is crucial that individuals with T2DM be kept under very stringent glycaemic control in order to avoid developing various cardiovascular, renal and metabolic complications associated with more severe forms of COVID-19 that lead to increased mortality. The use of novel antidiabetic agents dipeptidyl peptidase 4 inhibitors (DPP4i), sodium-glucose co-transporter 2 inhibitors (SGLT2i) and glucagon-like peptide 1 receptor agonists (GLP-1RAs) in subjects with T2DM may have beneficial effects on COVID-19 outcomes. However, relevant studies either show inconsistent results (DPP4i) or are still too few (SGLT2i and GLP-1RAs). Further research is therefore needed to assess the impact of these agents on COVID-19 outcomes.

15.
Expert Opin Drug Saf ; 20(11): 1309-1315, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1366929

ABSTRACT

INTRODUCTION: A number of anti-diabetic treatments have been favored during the continuing spread of the current SARS-CoV-2 pandemic. Glucagon like peptide-1 receptor agonists (GLP1-RAs) are a group of antidiabetic drugs, the glucose reducing effect of which is founded on augmenting glucose-dependent insulin secretion with concomitant reduction of glucagon secretion and delayed gastric emptying. Apart from their glucose lowering effects, GLP1-RAs also exert a plethora of pleiotropic activities in the form of anti-inflammatory, anti-thrombotic and anti-obesogenic properties, with beneficial cardiovascular and renal impact. All these make this class of drugs a preferred option for managing patients with type 2 diabetes (T2D), and potentially helpful in those with SARS-CoV2 infection. AREAS COVERED: In the present article we propose a hypothetical molecular mechanism by which GLP1-RAs may interact with SARS-CoV-2 activity. EXPERT OPINION: The beneficial properties of GLP1-RAs may be of specific importance during COVID-19 infection for the most fragile patients with chronic comorbid conditions such as T2D, and those at higher cardiovascular and renal disease risk. Yet, further studies are needed to confirm our hypothesis and preliminary findings available in the literature.


Subject(s)
COVID-19 Drug Treatment , Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide-1 Receptor/agonists , Hypoglycemic Agents/therapeutic use , Incretins/therapeutic use , Animals , COVID-19/epidemiology , COVID-19/metabolism , COVID-19/virology , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Humans , Hypoglycemic Agents/adverse effects , Incretins/adverse effects , Signal Transduction , Treatment Outcome
16.
Diabetes ; 70, 2021.
Article in English | ProQuest Central | ID: covidwho-1362266

ABSTRACT

Hospitalized patients often do not reach the ADA-recommended glucose targets, which in turn increases complications, costs, length of stay, and readmission rate. The ADA supports the availability of trained specialists and teams to improve outcomes. Partly in response to the SARS CoV-2 pandemic, we instituted an inpatient "virtual care" initiative by electronic medical record (EMR) review. The ProActive Glucose Advice Team (pGAT) utilizes specialist expertise, automated computerized detection of hyperglycemia, and feedback to the primary service. The pGAT team members consist of an endocrinologist, a nurse diabetes care and education specialist, and a clinical dietician. The team reviewed a computer-generated report of inpatients with either 2 or more blood glucose values ≥180 mg/dl within the last 24 hours, and/or a hemoglobin A1c (A1c) ≥8%. We proposed to enter a brief, structured "pGAT Note" in the EMR, followed by a "gentle reminder" note the next day, including advice for a formal diabetes education and an endocrinology consultation. This proactive approach to the management of hyperglycemia would provide a summary review of the patient's glucose state, determine the level of patient's self-care skills, and steps to improve inpatient glycemic control. For preliminary data during the first 4-month phase after implementation of the pGAT initiative, we examined individualized discharge management and timely outpatient follow-up with endocrinology. Of 37 patients (28 males, 9 females;average age 60.4 years), 34 were treated with intensive insulin therapy with multiple daily insulin injections, 31 were seen in f/u within 2 weeks of discharge, and 25 were begun on Continuous Glucose Monitoring. The average A1c fell from an inpatient value of 11.6% to 8.4% measured between 2-4 months later. During the next pGAT phase, we intend to study inpatient therapy parameters, notably appropriate use of computerized insulin order sets, titration of basal insulin, and prandial-correction bolus insulin use.

17.
J Cardiovasc Pharmacol ; 78(1): e1-e2, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1356726
18.
Medicina (Kaunas) ; 57(8)2021 Aug 06.
Article in English | MEDLINE | ID: covidwho-1348669

ABSTRACT

American singer-writer and visual artist Bob Dylan produced the song "The Times They Are a-Changin" in the 1960s, which became a rallying cry for the civil rights and anti-war movements in that decade [...].


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , United States
19.
J Cardiovasc Pharmacol Ther ; 25(6): 494-496, 2020 11.
Article in English | MEDLINE | ID: covidwho-630976

ABSTRACT

The current coronavirus disease 2019 (COVID-19) pandemic has led the scientific community to breach new frontiers in the understanding of human physiology and disease pathogenesis. It has been hypothesized that the human dipeptidyl peptidase 4 (DPP4) enzyme receptor may be a functional target for the spike proteins of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Since DPP4-inhibitors are currently used for the treatment of patients with type-2 diabetes (T2DM), there is currently high interest in the possibility that these agents, or incretin-based therapies (IBTs) in general, may be of benefit against the new coronavirus infection. Diabetes is associated with increased COVID-19 severity and mortality, and accumulating evidence suggests that IBTs may favorably alter the clinical course of SARS-CoV-2 infection due to their inherent mechanisms of action. Further research into prognostic variables associated with various antidiabetic treatment regimens, and in particular the IBT, in patients with T2DM affected by the COVID-19 pandemic is therefore warranted.


Subject(s)
Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Incretins/therapeutic use , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Betacoronavirus , COVID-19 , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Glucagon-Like Peptide-1 Receptor/metabolism , Humans , Hypoglycemic Agents , Incretins/pharmacology , Inflammation Mediators/metabolism , Pandemics , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL